
Computer Organization

Page 1

Syllabus:

Central Processing Unit: General Register Organization, STACK Organization. Instruction

Formats, Addressing Modes, Data Transfer and Manipulation, Program Control, Reduced

Instruction Set Computer.

Microprogrammed Control: Control Memory, Address Sequencing, Micro Program example,

Design of Control Unit.

Introduction:

The part of the computer that performs the bulk of data-processing operations is called

the central processing unit and is referred to as the CPU. The CPU is made up of three major

parts, as shown in Figure (1). The register set stores intermediate data used during the execution of

the instructions. The arithmetic logic unit (ALU) performs the required microoperations for

executing the instructions. The control unit supervises the transfer of information among the

registers and instructs the ALU as to which operation to perform.

Figure (1): Major components of CPU

One boundary where the computer designer and the computer programmer see the same machine

is the part of the CPU associated with the instruction set.

 From the designer's point of view, the computer instruction set provides the specifications

for the design of the CPU. The design of a CPU is a task that in large part involves

choosing the hardware for implementing the machine instructions.

 The user who programs the computer in machine or assembly language must be aware of

the register set, the memory structure, the type of data supported by the instructions, and

the function that each instruction performs.

The following sections describe the organization and architecture of the CPU with an emphasis on

the user's view of the computer, how the registers communicate with the ALU through buses,

explain the operation of the memory stack, the type of instruction formats available, the addressing

modes used to retrieve data from memory, and also the concept of reduced instruction set

computer (RISC).

General Register Organization:

 We know that the memory locations are needed for storing pointers, counters, return

addresses, temporary results, and partial products during multiplication. Having to refer to

memory locations for such applications is time consuming because memory access is the

most time-consuming operation in a computer.

www.jntufastupdates.com

Computer Organization

Page 2

 It is more convenient and more efficient to store these intermediate values in processor

registers. When a large number of registers are included in the CPU, it is most efficient to

connect them through a common bus system.

 The registers communicate with each other not only for direct data transfers, but also while

performing various microoperations. Hence it is necessary to provide a common unit that

can perform all the arithmetic, logic, and shift microoperations in the processor.

A bus organization for seven CPU registers is shown in the below figure.

Figure (2): Bus organization for CPU registers

The output of each register is connected to two multiplexers (MUX) to form the two buses A and

B. The selection lines in each multiplexer select one register or the input data for the particular bus.

The A and B buses form the inputs to a common arithmetic logic unit (ALU). The operation

selected in the ALU determines the arithmetic or logic microoperation that is to be performed. The

result of the microoperation is available for output data and also goes into the inputs of all the

registers. The register that receives the information from the output bus is selected by a decoder.

The decoder activates one of the register load inputs, thus providing a transfer path between the

data in the output bus and the inputs of the selected destination register.

The control unit that operates the CPU bus system directs the information flow through the

registers and ALU by selecting the various components in the system. For example, to perform the

operation

R 1 R2 + R3

the control must provide binary selection variables to the following selector inputs:

1. MUX A selector (SELA): to place the content of R2 into bus A.

2 . MUX B selector (SELB): to place the content of R 3 into bus B.

3 . ALU operation selector (OPR): to provide the arithmetic addition A + B.

www.jntufastupdates.com

Computer Organization

Page 3

4. Decoder destination selector (SELD): to transfer the content o f the output bus into R1.

Control word

There are 14 binary selection inputs in the unit, and their combined value specifies a control

word. The 14-bit control word is defined in Figure (3). It consists of four fields. Three fields

contain three bits each, and one field has five bits. The three bits of SELA select a source register

for the A input of the ALU. The three bits of SELB select a register for the B input of the ALU.

The three bits of SELD select a destination register using the decoder and its seven load outputs.

The five bits of OPR select one of the operations in the ALU. The 14-bit control word when

applied to the selection inputs specify a particular microoperation.

Figure (3): Control word

The encoding of the register selections is specified in the Table (a). The 3-bit binary code

listed in the first column of the table specifies the binary code for each of the three fields. The

register selected by fields SELA, SELB, and SELD is the one whose decimal number is equivalent

to the binary number in the code.

When SELA or SELB is 000, the corresponding multiplexer selects the external input

data. When SELD = 000, no destination register is selected but the contents of the output bus are

available in the external output.

Table (1): Encoding of Register Selection Fields
The ALU provides arithmetic and logic operations. The encoding of the ALU Operations are

specified in the Table (b). The OPR field has five bits and each operation is designated with a

symbolic name.

Table (2): Encoding of ALU operations

www.jntufastupdates.com

Computer Organization

Page 4

Examples of Microoperations:

A control word of 14 bits is needed to specify a rnicrooperation in the CPU. The control word for a

given microoperation can be derived from the selection variables. For example, the subtract

rnicrooperation given by the statement

R 1 R 2 – R3

specifies R2 for the A input of the ALU, R3 for the B input of the ALU, R1 for the destination

register, and an ALU operation to subtract A - B. Thus the control word is specified by the four

fields and the corresponding binary value for each field is obtained from the encoding listed in

Tables (1) and (2). The binary control word for the subtract rnicrooperation is 010 011 001 00101

and is obtained as follows:

The control word for this microoperation and a few others are listed in the below

table.

Table (3): Encoding of ALU operations

STACK Organization:

A useful feature that is included in the CPU of most computers is a stack or last-in, first-out

(LIFO) list. A stack is a storage device that stores information in such a manner that the item

stored last is the first item retrieved.

 The operation of a stack can be compared to a stack of trays. The last tray placed on top of

the stack is the first to be taken off.

The register that holds the address for the stack is called a stack pointer (SP) because its value
always points at the top item in the stack.

The two operations of a stack are the insertion and deletion of items.

1. Push or push-down (insertion operation)

2. Pop or pop-up (deletion operation)

www.jntufastupdates.com

Computer Organization

Page 5

Figure (4): the organization of a 64-word register stack.

Register Stack

A stack can be placed in a portion of a large memory or it can be organized as a collection of a

finite number of memory words or registers. Figure (3) shows the organization of a 64-word

register stack. The stack pointer register SP contains a binary number whose value is equal to the

address of the word that is currently on top of the stack.

In a 64-word stack, the stack pointer contains 6 bits because 26 = 64. Since SP has

only six bits, it cannot exceed a number greater than 63 (111111 in binary). When 63 is

incremented by 1, the result is 0 since 111111 + 1 = 1000000 in binary, but SP can accommodate

only the six least significant bits.

Similarly, when 000000 is decremented by 1, the result is 111111. The one-bit

register FULL is set to 1 when the stack is full, and the one-bit register EMPTY is set to 1 when

the stack is empty of items. DR is the data register that holds the binary data to be written into or

read out of the stack.

Push:

Initially, SP is cleared to 0, EMPTY is set to 1, and FULL is cleared to 0, so that SP points

to the word at address 0 and the stack is marked empty and not full. If the stack is not full (if FULL

= 0), a new item is inserted with a push operation. The push operation is implemented with the
following sequence of microoperations;

SP SP + 1 Increment stack pointer

M [SP] DR Write item on top of the stack

If (SP = 0) then (FULL 1) Check if stack is full

EMPTY 0 Mark the stack not empty

Pop:

A new item is deleted from the stack if the stack is not empty (if EMPTY = 0). The pop operation

consists of the following sequence of microoperations:

DR M [SP] Read item from the top of stack

SP SP – 1 Decrement stack pointer

If (SP = 0) then (EMTY 1) Check if stack is empty

FULL 0 Mark the stack not full

www.jntufastupdates.com

Computer Organization

Page 6

Memory Stack

A stack can exist as a stand-alone unit as in Figure (3) or can be implemented in a random-access

memory attached to a CPU. The implementation of a stack in the CPU is done by assigning a

portion of memory to a stack operation and using a processor register as a stack pointer. Figure (4)

shows a portion of computer memory partitioned into three segments: program, data, and stack.

Figure (5): Computer memory with program, data and stack segments

Reverse Polish Notation

A stack organization is very effective for evaluating arithmetic expressions. The common

mathematical method of writing arithmetic expressions imposes difficulties when evaluated by a

computer.

A * B + C * D infix notation

The Polish mathematician Lukasiewicz showed that arithmetic expressions can be represented in

prefix notation . This representation, often referred to as Polish notation, places the operator

www.jntufastupdates.com

Computer Organization

Page 7

before the operands. The postfix notation, referred to as reverse Polish notation (RPN), places the

operator after the operands. The following examples demonstrate the three representations:

A + B Infix notation

+ AB Prefix or Polish notation

AB + Postfix or reverse Polish notation

The reverse Polish notation is in a form suitable for stack manipulation. The expression

A * B + C * D

is written in reverse Polish notation as

Conversion to Reverse Polish Notation

AB * CD * +

The conversion from infix notation to reverse Polish notation must take into consideration the

operational hierarchy adopted for infix notation.

 This hierarchy dictates that we first perform all arithmetic inside inner parentheses,

then inside outer parentheses, and do multiplication and division operations before

addition and subtraction operations.

Let I be an algebraic expression written in infix notation. I may contain parentheses, operands, and

operators. For simplicity of the algorithm we will use only +, –, *, /, % operators. The precedence

of these operators can be given as follows:

Higher priority *, /, %

Lower priority +, –

No doubt, the order of evaluation of these operators can be changed by making use of parentheses.

For example, if we have an expression A + B * C, then first B * C will be done and the result will

be added to A. But the same expression if written as, (A + B) * C, will evaluate A + B first and

then the result will be multiplied with C. Consider the expression

(A + B) * (C * (D + E) + F)

The converted expression is

AB + CDE + * F + *

Step 1: Add “)” to the end of the infix expression

Step 2: Push “(” on to the stack

Step 3: Repeat until each character in the infix notation is scanned

IF a “(” is encountered, push it onto the stack

IF an operand (whether a digit or a character) is encountered, add it to

the postfix expression.

IF a “)” is encountered, then

a. Repeatedly pop from stack and add it to the postfix expression

until a “(” is encountered.

b. Discard the “(”. That is, remove the (from stack and do not add

it to the postfix expression

IF an operator ‘O’ is encountered, then

a. Repeatedly pop from stack and add each operator (popped from

the stack) to the postfix expression which has the same

precedence or a higher precedence than ‘O’

b. Push the operator ‘O’ to the stack

Step 4: Repeatedly pop from the stack and add it to the postfix expression until the

stack is empty

www.jntufastupdates.com

Computer Organization

Page 8

Example 1: A*B+C*D, first add “)” to the given expression i.e., A*B+C*D) and

also push “(” onto the stack.

InfixCharacter Scanned Stack Postfix Expression

(

A (A

* (* A

B (* AB

+ (+ AB*

C (+ AB*C

* (+* AB*C

D (+* AB*CD

) (+* AB*CD*+

Example 2: (A + B) * (C * (D + E) + F)

 First add “)” to the given expression i.e., (A + B) * (C * (D + E) + F)) and also

push “(” onto the stack.

Infix Character
Scanned Stack Postfix Expression

(

(((

A ((A

+ ((+ A

B ((+ AB

) (AB+

* (* AB+

((*(AB+

C (*(AB+C

* (*(* AB+C

((*(*(AB+C

D (*(*(AB+CD

+ (*(*(+ AB+CD

E (*(*(+ AB+CDE

www.jntufastupdates.com

Computer Organization

Page 9

) (*(* AB+CDE+

+ (*(+ AB+CDE+*

F (*(+ AB+CDE+*F

) (* AB+CDE+*F+

) AB+CDE+*F+*

Evaluation of Arithmetic Expressions

(1) Push the operands into the stack until an operator is reached
(2) Pop the top two operands from the stack, compute the result and also push the result back

into the stack.

(3) Continue this process until there are no more operators in the RPN and the final result is in

the stack.

The following numerical example may clarify this procedure. Consider the arithmetic expression

(3 * 4) + (5 * 6)

In reverse Polish notation, it is expressed as

34 * 56 * +

Instruction Formats:

A computer will usually have a variety of instruction code formats. It is the function of the

control unit within the CPU to interpret each instruction code and provide the necessary control

functions needed to process the instruction.

The bits of the instruction are divided into groups called fields. The most common fields

found in instruction formats are:

1. An operation code field that specifies the operation to be performed.

2. An address field that designates a memory address or a processor register.

3. A mode field that specifies the way the operand or the effective address is determined.

Other special fields are sometimes employed under certain circumstances, as for

example a field that gives the number of shifts in a shift-type instruction.

 The operation code field of an instruction is a group of bits that define various processor

operations, such as add, subtract, complement, and shift.

www.jntufastupdates.com

Computer Organization

Page 10

 The bits that define the mode field of an instruction code specify a variety of alternatives

for choosing the operands from the given address.

In this section we are concerned with the address field of an instruction format and consider the

effect of including multiple address fields in an instruction.

Operations specified by computer instructions are executed on some data stored in memory

or processor registers. Operands residing in memory are specified by their memory address.

Operands residing in processor registers are specified with a register address. A register address

is a binary number of k bits that defines one of 2kregisters in the CPU.

Computers may have instructions of several different lengths containing varying number of

addresses. The number of address fields in the instruction format of a computer depends on the

internal organization of its registers. Most computers fall into one of three types of CPU

organizations:

1. Single accumulator organization.

2. General register organization.

3. Stack organization.

1. An accumulator-type organization:

All operations are performed with an implied accumulator register. The instruction format in this

type of computer uses one address field. For example, the instruction that specifies an arithmetic

addition is defined by an assembly language instruction as:

ADD X

where X is the address of the operand. The ADD instruction in this case results in the operation

AC AC + M[X]. AC is the accumulator register and M [X] symbolizes the memory word

located at address X.

2. A general register type of organization:

The instruction format in this type of computer needs three register address fields. Thus the

instruction for an arithmetic addition may be written in an assembly language as

ADD R1 , R2 , R3

to denote the operation R 1 R2 + R 3 . The number o f address fields in the instruction can be

reduced from three to two if the destination register is the same as one of the source registers. Thus

the instruction

ADD R1 , R2

would denote the operation R1 R1 + R2. Only register addresses for R1 and R2 need be
specified in this instruction.

General register-type computers employ two or three address fields in their instruction format.

Each address field may specify a processor register or a memory word. An instruction

symbolized by

ADD R1 , X

would specify the operation R1 R1 + M[X]. It has two address fields, one for register R1 and

the other for the memory address X.

3. A stack organization:

Computers with stack organization would have PUSH and POP instructions which require an

address field. Thus the instruction

PUSH X

will push the word at address X to the top of the stack. The stack pointer is updated automatically.

Operation-type instructions do not need an address field in stack-organized computers. This

is because the operation is performed on the two items that are on top of the stack. The instruction

ADD

www.jntufastupdates.com

Computer Organization

Page 11

in a stack computer consists of an operation code only with no address field. This operation has the

effect of popping the two top numbers from the stack, adding the numbers, and pushing the

sum into the stack. There is no need to specify operands with an address field since all operands

are implied to be in the stack.

 To illustrate the influence of the number of addresses on computer programs, we will
evaluate the arithmetic statement

X = (A + B) • (C + D)
using zero, one, two, or three address instructions. We will use the symbols ADD, SUB, MUL, and

DIV for the four arithmetic operations; MOV for the transfer-type operation; and LOAD and

STORE for transfers to and from memory and AC register. We will assume that the operands are

in memory addresses A, B, C, and D, and the result must be stored in memory at address X.

Three-Address Instructions:

Two-Address Instructions:

One-Address Instructions:

Zero-Address Instructions:

RISC Instructions:

www.jntufastupdates.com

Computer Organization

Page 12

Addressing Modes:

The operation field of an instruction specifies the operation to be performed. This operation

must be executed on some data stored in computer registers or memory words. The way the

operands are chosen during program execution is dependent on the addressing mode of the

instruction. The addressing mode specifies a rule for interpreting or modifying the address field of

the instruction before the operand is actually referenced.

In simple terms, Addressing mode is the way in which the location of an operand can be
specified in an instruction. It generates an effective address (the actual address of the operand).

Instruction format with mode field

Types of Addressing Modes:

1. Implied Mode

2. Immediate Mode

3. Register Mode

4. Register Indirect Mode:

5. Autoincrement or Autodecrement Mode

6. Direct Address Mode

7. Indirect Address Mode

8. Relative Address Mode

9. Indexed Addressing Mode

10. Base Register Addressing Mode

There are two modes that need no address field at all. These are the implied and

immediate modes.

1. Implied Mode: In this mode the operands are specified implicitly in the definition of the

instruction.

For example, the instruction ”complement accumulator (CMA)” is an implied-mode

instruction because the operand in the accumulator register is implied in the definition of

the instruction. In fact, all register reference instructions that use an accumulator are

implied-mode instructions. Zero-address instructions in a stack-organized computer are

implied-mode instructions since the operands are implied to be on top of the stack.

2. Immediate Mode: In this mode the operand is specified in the instruction itself. In other

words, an immediate-mode instruction has an operand field rather than an address field.

The operand field contains the actual operand to be used in conjunction with the operation

specified in the instruction.

EX: LDAC #34H

LDAC loads data from memory to accumulator.

Therefore, AC=00110100.

When the address field specifies a processor register, the instruction is said

to be in the register mode.

www.jntufastupdates.com

Computer Organization

Page 13

3. Register Mode: In this mode the operands are in registers that reside within the CPU. The

particular register is selected from a register field in the instruction.

4. Register Indirect Mode: In this mode the instruction specifies a register in the CPU whose

contents give the address of the operand in memory. In other words, the selected register

contains the address of the operand rather than the operand itself.

EX: LDAC (R1)

If R1cotains the address of an operand in the memory, for example: address of an

operand is 2000 which contains a value 350. Result: 350 is stored in the AC.

5. Autoincrement Mode: This is similar to the register indirect mode except that the register

is incremented or decremented after (or before) its value is used to access memory. The

effective address of the operand is the contents of a register specified in the instruction.

After accessing the operand, the contents of the register are automatically incremented to

the next value.

www.jntufastupdates.com

Computer Organization

Page 14

6. Autodecrement Mode

The effective address of the operand is the contents of a register specified in the instruction.

Before accessing the operand, the contents of this register are automatically decremented

and then the value is accessed.

Sometimes the value given in the address field is the address of the operand, but sometimes

it is just an address from which the address of the operand is calculated.

7. Direct Address Mode: In this mode the effective address is equal to the address part of the

instruction. The operand resides in memory and its address is given directly by the address

field of the instruction. In a branch-type instruction the address field specifies the actual

branch address.

Ex: LDAC 5000

This instruction reads the operand from the Memory location 5000. if the memory location

5000 contains a value 250, then it will be stored in AC.

8. Indirect Address Mode: In this mode the address field of the instruction gives the address

where the effective address is stored in memory. Control fetches the instruction from

memory and uses its address part to access memory again to read the effective address.

www.jntufastupdates.com

Computer Organization

Page 15

EX: ADD (A), R1

 If A is address of EA. For example: address of A is 1000 which contains 3000, 3000 is an

address of an operand (EA).

 This instruction reads an operand from the location address 3000 and adds its contents to

R1.

A few addressing modes require that the address field of the instruction be added to the content

of a specific register in the CPU. The effective address in these modes is obtained from the

following computation:

 effective address = address part of instruction + content of CPU register

The CPU register used in the computation may be the program counter, an index register, or a

base register. In either case we have a different addressing mode which is used for a different

application.

9. Relative Address Mode:

In this mode the content of the program counter is added to the address part of the

instruction in order to obtain the effective address.

EX:

PC= address of next instruction , i.e., 1. The address given in the instruction is 5

Then EA= 5 + 1= 6 which contains a value 12. Finally AC contains 12.

10. Indexed Addressing Mode:

In this mode the content of an index register is added to the address part of the instruction

to obtain the effective address.

www.jntufastupdates.com

Computer Organization

Page 16

Ex: LDAC A(XR)

Assume XR=100, A=500

This instruction reads the operand from the effective address (600)

i.e., EA= XR contents (index register) + 500

= 100 + 500=600

If memory location at 600 contains a value 55 (assume), This 55 will be stored in AC.

11. Base Register Addressing Mode:

In this mode the content of a base register is added to the address part of the instruction to

obtain the effective address.

Ex: LDAC A(R)

Assume R=1000, A=50

This instruction reads the operand from the effective address (1050)

i.e., EA= R contents (Base register) + 50

= 1000 + 50=1050

If memory location at 1050 contains a value 255 (assume), this 255 will be stored in

AC.

Numerical Example:

www.jntufastupdates.com

Computer Organization

Page 17

Table (4): Tabular list of some addressing modes of numerical example.

Data Transfer and Manipulation:

Computers provide an extensive set of instructions to give the user the flexibility to carry out

various computational tasks. The instruction set of different computers differ from each other

mostly in the way the operands are determined from the address and mode fields.

Most computer instructions can be classified into three categories:

1. Data transfer instructions

2. Data manipulation instructions

3. Program control instructions

Data transfer instructions cause transfer of data from one location to another without changing

the binary information content.

Data manipulation instructions are those that perform arithmetic, logic, and shift operations.

Program control instructions provide decision-making capabilities and change the path taken by

the program when executed in the computer.

The instruction set of a particular computer determines the register transfer operations and control

decisions that are available to the user.

1. Data transfer instructions

Data transfer instructions move data from one place in the computer to another without

changing the data content. The most common transfers are between memory and processor

registers, between processor registers and input or output, and between the processor registers

themselves. Table (5) gives a list of eight data transfer instructions used in many computers.

www.jntufastupdates.com

Computer Organization

Page 18

Table (5): Data Transfer Instructions

 The load instruction has been used mostly to designate a transfer from memory to a

processor register, usually an accumulator.

 The store instruction designates a transfer from a processor register into memory.

 The move instruction has been used in computers with multiple CPU registers to designate

a transfer from one register to another. It has also been used for data transfers between CPU

registers and memory or between two memory words.

 The exchange instruction swaps information between two registers or a register and a

memory word.

 The input and output instructions transfer data among processor registers and input or

output terminals.

 The push and pop instructions transfer data between processor registers and a memory

stack.

2. Data Manipulation Instructions

Data manipulation instructions perform operations on data and provide the computational

capabilities for the computer. The data manipulation instructions in a typical computer are

usually divided into three basic types:

i. Arithmetic instructions

ii. Logical and bit manipulation instructions

iii. Shift instructions

i. Arithmetic instructions

Table (6): Arithmetic Instructions

www.jntufastupdates.com

Computer Organization

Page 19

 A special carry flip-flop is used to store the carry from an operation. The instruction "add

with carry" performs the addition on two operands plus the value of the carry from the

previous computation.

 Similarly, the "subtract with borrow" instruction subtracts two words and a borrow which

may have resulted from a previous subtract operation.

 The negate instruction forms the 2' s complement of a number.

ii. Logical and Bit Manipulation Instructions

Logical instructions perform binary operations on strings of bits stored in registers. They

are useful for manipulating individual bits or a group of bits that represent binary-coded

information. The logical instructions consider each bit of the operand separately and treat it

as a Boolean variable.

Table (7): Logic and Bit Manipulation Instructions

iii. Shift Instructions

Instructions to shift the content of an operand are quite useful and are often provided in

several variations. Shifts are operations in which the bits of a word are moved to the left or

right. The bit shifted in at the end of the word determines the type of shift used. Shift

instructions may specify logical shifts, arithmetic shifts, or rotate-type operations. In either

case the shift may be to the right or to the left.

Table (8): Shift Instructions

The rotate through carry instruction treats a carry bit as an extension of the register

whose word is being rotated. Thus a rotate-left through carry instruction transfers the

carry bit into the rightmost bit position of the register, transfers the leftmost bit position

into the carry and at the same time, and shifts the entire register to the left.

www.jntufastupdates.com

Computer Organization

Page 20

A possible instruction code format of a shift instruction may include five fields as follows:

OP REG TYPE RL COUNT

OP- operation code field

REG- a register address that specifies the location of the operand

TYPE- a 2-bit field specifying the four different types of shifts

RL- a 1-bit field specifying a shift right or left

COUNT- a k-bit field specifying up to 2k - 1 shifts

Program Control:
After the execution of a data transfer or data manipulation instruction, control

returns to the fetch cycle with the program counter containing the address of the instruction

next in sequence.

On the other hand, a program control type of instruction, when executed, may

change the address value in the program counter and cause the flow of control to be altered.

In other words, program control instructions specify conditions for altering the content of

the program counter, while data transfer and manipulation instructions specify conditions

for data-processing operations.

The change in value of the program counter as a result of the execution of a

program control instruction causes a break in the sequence of instruction execution. This is

an important feature in digital computers, as it provides control over the flow of program

execution and a capability for branching to different program segments.

Table (9) : Program Control Instructions

Status Bit Conditions:

It is sometimes convenient to supplement the ALU circuit in the CPU with a status

register where status bit conditions can be stored for further analysis. Status bits are also

called condition-code bits or flag bits. Figure (6) shows the block diagram of an 8-bit ALU

with a 4-bit status register. The four status bits are symbolized by C. S, Z, and V. The bits

are set or cleared as a result of an operation performed in the ALU.

1. Bit C (carry) is set to 1 if the end carry C8 is 1. It is cleared to 0 if the carry is 0.

2. Bit S (sign) is set to 1 if the highest-order bit F7 is 1. It is set to 0 if the bit is 0.

3. Bit Z (zero) is set to 1 if the output of the ALU contains all 0's. It is cleared to 0

otherwise. In other words, Z = 1 if the output is zero and Z = 0 if the output is

not zero.

www.jntufastupdates.com

Computer Organization

Page 21

4. Bit V (overflow) is set to 1 if the exclusive-OR of the last two carries is equal to 1,

and cleared to 0 otherwise. This is the condition for an overflow when negative

numbers are in 2's complement. For the 8-bit ALU, V = 1 if the output is greater

than + 127 or less than – 128.

Figure (6): Status register bits

Conditional Branch Instructions:

To change the flow of execution in the program we use some kind of branching

instructions which are depending on the some conditions result.

Each mnemonic is constructed with the letter B (for branch) and an abbreviation of the

condition name. When the opposite condition state is used, the letter N (for no) is inserted to define

the 0 state. Thus BC is Branch on Carry, and BNC is Branch on No Carry.

If the stated condition is true, program control is transferred to the address

specified by the instruction. If not, control continues with the instruction that follows. The

conditional instructions can be associated also with the jump, skip, call, or return type of program

control instructions.

www.jntufastupdates.com

Computer Organization

Page 22

Table (10): Conditional Branch Instructions

Example: Consider an 8-bit ALU as shown in Figure (6). The largest unsigned number that can be

accommodated in 8 bits is 255. The range of signed numbers is between + 127 and - 128. Let A =

11110000 and B = 00010100. To perform A - B, the ALU takes the 2's complement of B and adds

it to A.

The compare instruction updates the status bits as shown. C = 1 because there is a carry out of the

last stage. S = 1 because the leftmost bit is 1. V = 0 because the last two carries are both equal to 1,

and Z = 0 because the result is not equal to 0.

Subroutine Call and Return:

A subroutine is a self-contained sequence of instructions that performs a given

computational task. During the execution of a program, a subroutine may be called to perform its

function many times at various points in the main program. Each time a subroutine is called, a

branch is executed to the beginning of the subroutine to start executing its set of instructions. After

the subroutine has been executed, a branch is made back to the main program.

www.jntufastupdates.com

Computer Organization

Page 23

The instruction that transfers program control to a subroutine is known by different names. The

most common names used are call subroutine, jump to subroutine, branch to subroutine, or

branch and save address.

A call subroutine instruction consists of an operation code together with an address that specifies

the beginning of the subroutine. The instruction is executed by performing two operations:

(1) The address of the next instruction available in the program counter (the return address) is

stored in a temporary location so the subroutine knows where to return, and

(2) Control is transferred to the beginning of the subroutine. The last instruction of every

subroutine, commonly called return from subroutine, transfers the return address from the

temporary location into the program counter. This results in a transfer of program control to

the instruction whose address was originally stored in the temporary location.

The most efficient way is to store the return address in a memory stack. The advantage of using

a stack for the return address is that when a succession of subroutines is called, the sequential

return addresses can be pushed into the stack. The return from subroutine instruction causes the

stack to pop and the contents of the top of the stack are transferred to the program counter. In

this way, the return is always to the program that last called a subroutine. A subroutine call is

implemented with the following microoperations:

If another subroutine is called by the current subroutine, the new return address is pushed into

the stack, and so on. The instruction that returns from the last subroutine is implemented by the

microoperations:

By using a subroutine stack, all return addresses are automatically stored by the hardware in

one unit. The programmer does not have to be concerned or remember where the return

address was stored.

 A recursive subroutine is a subroutine that calls itself.

www.jntufastupdates.com

Computer Organization

Page 24

Program interrupt:

Program interrupt refers to the transfer of program control from a currently running program to

another service program as a result of an external or internal generated request. Control returns to

the original program after the service program is executed.

The interrupt procedure is, in principle, quite similar to a subroutine call except for three

variations:

(1) The interrupt is usually initiated by an internal or external signal rather than from the execution

of an instruction (except for software interrupt as explained later);

(2) The address of the interrupt service program is determined by the hardware rather than from

the address field of an instruction; and

(3) An interrupt procedure usually stores all the information necessary to define the state of the

CPU rather than storing only the program counter.

The state of the CPU at the end of the execute cycle (when the interrupt is recognized) is

determined from:

1. The content of the program counter

2. The content of all processor registers

3. The content of certain status conditions

The collection of all status bit conditions in the CPU is sometimes called a program

status word or PSW. The PSW is stored in a separate hardware register and contains the status

information that characterizes the state of the CPU

The last instruction in the service program is a return from interrupt instruction.

When this instruction is executed, the stack is popped to retrieve the old PSW and the return

address. The PSW is transferred to the status register and the return address to the program

counter. Thus the CPU state is restored and the original program can continue executing.

There are three major types of interrupts that cause a break in the normal execution of a

program. They can be classified as:

1. External interrupts

2. Internal interrupts

3. Software interrupts

External interrupts come from input-output (l/0) devices, from a timing device, from a circuit

monitoring the power supply, or from any other external source. Examples that cause external

interrupts are l/0 device requesting transfer of data, l/0 device finished transfer of data etc.

Internal interrupts arise from illegal or erroneous use of an instruction or data. Internal interrupts

are also called traps . Examples of interrupts caused by internal error conditions are register

overflow, attempt to divide by zero, an invalid operation code, stack overflow, and protection

violation.

External and internal interrupts are initiated from signals that occur in the hardware of the CPU.

A software interrupt is initiated by executing an instruction. Software interrupt is a special call

instruction that behaves like an interrupt rather than a subroutine call. It can be used by the

programmer to initiate an interrupt procedure at any desired point in the program. The most

www.jntufastupdates.com

Computer Organization

Page 25

common use of software interrupt is associated with a supervisor call instruction. This instruction

provides means for switching from a CPU user mode to the supervisor mode.

Reduced Instruction Set Computer (RISC):

 An important aspect of computer architecture is the design of the instruction set for the

processor.

 Early computers had small and simple instruction sets, forced mainly by the need to

minimize the hardware used to implement them .

 As digital hardware became cheaper with the advent of integrated circuits, computer

instructions tended to increase both in number and complexity. Many computers have

instruction sets that include more than 100 and sometimes even more than 200 instructions.

These computers also employ a variety of data types and a large number of addressing

modes.

A computer with a large number of instructions is classified as a complex instruction set

computer, abbreviated CISC.

In the early 1980s, a number of computer designers recommended that computers use

fewer instructions with simple constructs so they can be executed much faster within the CPU

without having to use memory as often. This type of computer is classified as a reduced

instruction set computer or RISC.

CISC Characteristics

The major characteristics of CISC architecture are:

1. A large number of instructions-typically from 100 to 250 instructions

2. Some instructions that perform specialized tasks and are used infrequently

3. A large variety of addressing modes-typically from 5 to 20 different modes

4. Variable-length instruction formats

5. Instructions that manipulate operands in memory

RISC Characteristics

The concept of RISC architecture involves an attempt to reduce execution time by simplifying

the instruction set of the computer The major characteristics of RISC architecture are:

1. Relatively few instructions

2. Relatively few addressing modes

3. Memory access limited to load and store instructions

4. All operations done within the registers of the CPU

5. Fixed-length, easily decoded instruction format

6. Single-cycle instruction execution

7. Hardwired rather than microprogrammed control

Other characteristics attributed to RISC architecture are:

1. A relatively large number of registers in the processor unit

2. Use of overlapped register windows to speed-up procedure call and return

3. Efficient instruction pipeline

4. Compiler support for efficient translation of high-level language programs into

machine language .

www.jntufastupdates.com

Computer Organization

Page 26

Overlapped Register Windows

Procedure call and return occurs quite often in high-level programming languages. When

translated into machine language, a procedure call produces a sequence of instructions that

save register values, pass parameters needed for the procedure, and then calls a subroutine to

execute the body of the procedure. After a procedure return, the program restores the old

register values, passes results to the calling program, and returns from the subroutine. Saving

and restoring registers and passing of parameters and results involve time consuming

operations.

A characteristic of some RISC processors is their use of overlapped register

windows to provide the passing of parameters and avoid the need for saving and restoring

register values.

Berkeley RISC I

 One of the first projects intended to show the advantages of RISC architecture was

conducted at the University of California, Berkeley.

 The Berkeley RISC I is a 32-bit integrated circuit CPU. It supports 32-bit addresses and

either 8-, 16-, or 32-bit data. It has a 32-bit instruction format and a total of 31 instructions.

 There are three basic addressing modes: register addressing, immediate operand, and

relative to PC addressing for branch instructions. It has a register file of 138 registers arranged

into 10 global registers and 8 windows of 32 registers in each.

www.jntufastupdates.com

	UNIT- III Syllabus:
	Introduction:
	General Register Organization:
	R 1 R2 + R3
	Control word
	Examples of Microoperations:

	STACK Organization:
	Register Stack
	Push:
	SP SP + 1 Increment stack pointer
	DR M [SP] Read item from the top of stack
	Reverse Polish Notation
	+ AB Prefix or Polish notation
	 This hierarchy dictates that we first perform all arithmetic inside inner parentheses, then inside outer parentheses, and do multiplication and division operations before addition and subtraction operations.
	Higher priority *, /, % Lower priority +, –

	Instruction Formats:
	1. An accumulator-type organization:
	ADD X
	2. A general register type of organization:
	ADD R1 , R2 , R3
	ADD R1 , R2
	ADD R1 , X
	3. A stack organization:
	PUSH X
	ADD
	Three-Address Instructions:
	Instruction format with mode field
	Ex: LDAC 5000
	EX: ADD (A), R1
	 effective address = address part of instruction + content of CPU register
	EX:
	Ex: LDAC A(XR)
	Ex: LDAC A(R) Assume R=1000, A=50

	Data Transfer and Manipulation:
	OP REG TYPE RL COUNT

	Program Control:
	Status Bit Conditions:
	Conditional Branch Instructions:
	Subroutine Call and Return:
	Program interrupt:
	CISC Characteristics
	RISC Characteristics
	Overlapped Register Windows
	Berkeley RISC I

